Headmirror's ENT in a Nutshell Jugular Paragangliomas (glomus jugulare) Expert: Matthew Carlson, MD

Presentation (0:30)

- <u>Symptomatology</u>
 - o Pulsatile tinnitus
 - Conductive hearing losss
 - Lower cranial neuropathies (dysphonia, dysphagia, hypernasal speech) ~20%
 - Intermittent bloody otorrhea (late)
- Epidemiology
 - 40-60s (in contrast to familial paraganglioma which presents at younger age)
 - More common in women (6:1 ratio)
- Physical Examination
 - Red or violaceous color retrotympanic mass that can fill the inferior aspect of the tympanic membrane or extend to the entire middle ear space
 - **Rising sun sign** recruit blood vessels of the ear canal that creates red hue of annulus with extension to the inferior aspect of EAC
 - Brown's sign pneumatic otoscopy results in blanching of tumor
 - Aquino's sign carotid compression decreases pulsations on otoscopy
 - Additional evaluation (cranial nerves)
 - Nasopharyngoscopy
 - Facial nerve assessment (not common)
 - High vagal injuries (palate incompetence with nasopharyngeal reflux, rhinolalia, ipsilateral vocal cord paralysis with lack of sensation)
 - Hypoglossal nerve weakness (hemiatrophy)
 - Accessory nerve involvement (not common)
 - Vernett syndrome IX,X, XI deficits
 - Villaret's syndrome– IX, X, XI, XII, Horner's syndrome +/- facial nerve deficits
- Differential diagnosis
 - Facial nerve schwannoma
 - Endolymphatic sac tumor
 - o Encephalocele
 - o Middle ear adenoma
 - o Inflammatory lesion (chronic otitis media with polyp)
 - High jugular bulb (purple hue posterior and inferior)
 - Aberrant petrous carotid artery

Pathophysiology (8:35)

- <u>Historic terminology</u>
 - Chemodectomas (derived from chemoreceptors)→ Glomus tumors → Paragangliomas
- Paragangliomas
 - Jugular paraganglioma

- Tympanic paraganglioma
- Vagal paraganglioma
- Carotid body tumor
- Derived from chief cells within paraganglia cells
 - Neuroendocrine in origin
 - Non-chromaffin staining cells, tend to cluster in nests (Zellballen)
- Functional (secreting tumors)
 - o 2-5% of head and neck paragangliomas will secrete catecholamines
 - o Uncontrolled hypertension, headache, diaphoresis, palpitations, arrythmia
 - Risk of malignancy 1-3% (lower risk than paragangliomas outside of the head and neck)
- Diagnosis of malignancy is not based off histopathologic features
 - Have to find tumor in the lymph nodes to demonstrate metastasis

Workup (11:16)

- Imaging
 - \circ $\;$ High resolution thin sliced temporal bone CT scan
 - Jugular foramen involvement
 - Erosion of caroticojugular spine (bone that intervenes between carotid artery and jugular bulb)
 - Moth eating appearance of bone and poor margins
 - Can extend into petrous apex and intracranial extension
 - o MRI
 - Demonstrate heterogenous salt and pepper appearance (prominent on T2)
 - Avidly enhance on T1, ill-defined borders or boundaries
 - Differential diagnosis on imaging
 - Meningioma can involve jugular foramen or secondarily invade jugular foramen. Do not dilate jugular foramen. Have bone formation within tumor. Hyperostosis of surround base. Dural tails.
 - Schwannoma dumb-bell appearance (wide within posterior fossa, constricted at jugular foramen and wide in the neck)
 - Conventional angiography
 - Prominent vascular blush
 - Abdomen and chest CT scan
 - Especially if multi-centric tumor or symptoms of excess catecholamines
 - Look for pheochromocytoma
 - •
 - Dotatate-PET
 - >90% sensitivity and specificity
 - Whole body scan
- <u>Laboratory Evaluation</u>
 - Fractionated 24 urine metanephrines
 - 2-3 fold increase over baseline for this to be considered positive

- Trending toward getting these on all jugular paraganglioma patients (even though secreting <5%)
- o Molecular genetic testing
 - Provide prognosis for disease and influence surveillance
 - Consider for malignant tumors, multi-centric tumors, secreting tumors, young male
 - MEN2A, MEN2B, von Hippel Lindau, NF1, familial paraganglioma syndrome
 - familial paraganglioma syndrome autosomal dominant, succinate dehydrogenase mutation
 - type I-III benign disease course (non-secreting, nonmalignant)
 - o type IV more likely secreting and malignant

- <u>Staging</u>

- Glasscock-Jackson
 - Type 1: small tumor involving jugular bulb, middle ear space and mastoid
 - Type 2: extends under internal auditory canal and may have intracranial extension
 - Type 3: erodes into petrous apex and may have intracranial extension
 - Type 4: extends beyond petrous apex to include clivus and infratemporal fossa and may have intracranial extension
- o Fisch
 - Type A: middle ear cleft (glomus tympanicum)
 - Type B: middle ear and mastoid
 - Type C1: carotid foramen
 - Type C2: vertical portion of the carotid
 - Type C3: horizontal portion of the carotid artery involving petrous apex
 - Type C4: more extension beyond petrous apex to involve paraclival area, foramen lacerum, and infratemporal fossa
 - Type D1: <2 cm intracranial extension
 - Type D2: >2 cm intracranial extension
 - Type D3: unresectable intracranial tumor

Treatment (21:12)

- Surgical resection
 - Limited resection (just middle ear component)
 - **Subtotal** resection (leave most critical portion in jugular foramen intact to prevent lower cranial neuropathy)
 - Gross total resection (historical gold standard but less common now)
 - More feasible with small tumor
 - 20-40% increase risk of developing lower cranial neuropathy
 - Other surgical considerations
 - Alpha blockade followed by beta blockade if catecholamine secreting tumor

- Pre-operative embolization (ascending pharyngeal and occipital artery) with angiography almost always used to reduce intraoperative bleeding and need for transfusion
- Infratemporal fossa type A approach: subtotal petrosectomy with ear canal closure + mobilization (anteriorly) of facial nerve
 - Newer techniques avoid or limit mobilization of facial nerve and closure of ear canal
- <u>Radiosurgery</u>
 - Gamma knife / Cyber knife
 - Risk of acquiring new or worsening cranial neuropathy with standard treatment dose is 1-10%
 - Tumor control after is >90% out to 10 years
 - Can be used primarily or adjuvant therapy or recurrence
 - Inferior extension is limited (down to C2)
- Observation
 - 30-40% of tumors will grow over 5 years
 - 20-30% chance of new or worsening lower cranial neuropathy
- Follow Up
 - Observation: Every 6 months, then yearly
 - o Risk of recurrence is related to volume tumor left behind
 - Every year; more frequent if sub-total resection
 - Lifelong follow up needed
 - Radiosurgery: 9 months after treatment, then yearly
 - Lifelong follow up